BACHELOR IN PROSTHETICS AND ORTHOTICS (BPO)

Curriculum & Guidelines

REHABILITATION COUNCIL OF INDIA
B-22 Qutub Institutional Area
New Delhi 110016

2010
SYLLABUS FOR DEGREE COURSE IN PROSTHETICS AND ORTHOTICS
(Bachelor in Prosthetics and Orthotics – BPO)

1. INTRODUCTION

Rehabilitation of persons with locomotor disabilities or neuromuscular disorder is a team work, where Centre of attention is the person with disabilities. The team usually comprises of the Physical medicine and Rehabilitation Specialist (Physiatrist) who is usually the leader, Prosthetist and Orthotist, Physiotherapist, Occupational therapist, Social worker and Rehabilitation Nurse. Depending upon the need, other professionals like Orthopedic Surgeons, engineer, psychologist, geriatrist and other related professionals are also included in the team.

General planning of the total rehabilitation of the disabled is usually done by the Physiatrist. The role of Prosthetist and Orthotist is important. It is she/he, who fabricates and fits the prosthesis or orthosis to the persons with disabilities both temporary and permanent often referred as “Patient” and thus helps make the patient independent, confident and useful member of the society.

2. PROFESSIONAL PROFILE OF PROSTHETICS & ORTHOTICS GRADUATE OR PROSTHETIST/ORTHOTIST

The following professional profile has its basis in the Report of the United Nations Inter-Regional Seminar on Standards for the Training of Prosthetist (UN, 1968) the so called Holte Report. It has moreover been modified to comply with Guidelines for Training of Personnel in Developing Countries for Prosthetics & Orthotics Services (WHO, 1990). It was updated at the WHO/ISPO Consultation for Training Personnel in Developing Countries for Prosthetics and Orthotics Services (2003) and finalised in 2004.

2.1. Care of persons with disabilities

2.1.1. Formulation of treatment

- Participates as full member of the clinic team; take part in the examination and prescription; and in the designing of the Prosthetics/Orthotics device, including the socket or body/device interface, suspension and selection of proper components.

- Records and reports any pertinent information regarding patient and patient’s families, including a determination of expectations and needs regarding Prosthetic and Orthotic aids

- Communicates appropriate information to the patients and their families.

- Ensure the full inclusion of the patient or customer in the treatment, planning and decision making.
2.1.2. Fitting and fabrication

- Formulates Prosthetics or Orthotics designs including selection of materials, components and additional aids.
- Takes all casts and measurements that are necessary for proper fabrication and fitting.
- Modifies positive and/or negative models and/or layout of design to obtain optimal fit and alignment.
- Carries out fitting, static and dynamic alignment and, where appropriate, preliminary training and initial check-out.
- Performs and/or supervises fabrication of prosthesis and orthosis.

2.1.3. Evaluation and follow-up

- Participate in final check-out and evaluation of fit, function and cosmeses.
- Instruct the patient or family in the use and care of the device.
- Takes part in follow-up procedures as well as maintenance, repairs and replacement of the appliance.
- Recognizes the need to repeat any of the identified steps in order to optimize fit and function and alters accordingly.
- Collaborates and consults with other rehabilitation team.

2.2 Management and supervision

- Supervise the activity of supporting staff as appropriate.
- Manages Prosthetics and Orthotics workshop activities assigned to him/her, including:
 - use and maintenance of tools and equipment
 - Maintenance of safe working environment and procedures
 - Inventory and stock control
 - Personnel matters
 - Financial matters
 - Appropriate record keeping
 - Total quality management
- Identifies and introduces improved job methods for increasing efficiency
- Interacts with professional groups and, where appropriate, Governmental and non-governmental organizations.

2.3. Training and education

- Supervises and conducts the education and training of Prosthetics & Orthotics students.
Lectures and demonstrates to colleagues in his/her profession and other professionals concerned with Prosthetic/Orthotics and also to other interested groups.

To take part in and contribute to the process of continuing professional development

Keeps up to date new development in prosthetics and orthotics and teaching techniques

2.4. To facilitate CBR workers how to assist P&O professionals in need

To make people aware and especially persons with disabilities and the family members, about the need for and benefit of good quality Prosthetics & Orthotics service.

2.5. Community Services

Makes a professional contribution to and take part in community rehabilitation programmes.

2.6. Research and Development

Conducts continuing evaluation of his/her activities.

Develops and actively participates in formal evaluation and research programmes.

Participates in scientific/professional meetings and contributes papers to scientific/professional journals.

Use outcome measures to review treatment procedures to determine best practice

2.7. Legal and Ethical Requirement

Provide patient care, which complies with medical/legal requirements.

Provide patient care within a recognized Prosthetics/Orthotics code of ethics.

3. Learning objective of course

Learning objectives have been made to reflect the necessary level of learning for the students within each of the subject areas presented in this curriculum.

It should also be noted that the course which encompasses these learning objectives will normally be covered in four years full time duration. This provides guidance as to the expected level of the course.

1. Anatomy
2. Physiology
3. Materials and Workshop Technology
4. Applied Mechanics & Strength of Materials
5. Engineering Drawing
6. Biomechanics
7. Prosthetics Science
8. Orthotics Science
9. Pathology
10. Orthopedics and Amputation Surgery
11. Physical medicine and Rehabilitation
12. Fundamentals of Electricity and Electronics
13. Computer Science
14. Mobility and rehabilitation Aids
15. Research Methodology
16. Prosthetics and orthotics workshop management
17. Clinical Practice

3.1 Anatomy

Course Description:

The student should understand the function of individual joints and muscles and be proficient in explaining their interaction. He/she should be knowledgeable in the area of clinical conditions and be able to analyse them by means of appropriate measuring instruments as well as by applying his/her knowledge of range of motion in order to be able to identify a viable prosthetic/orthotic treatment. The student should recognise that biomechanical as well as pathological factors must be viewed concurrently with anatomical factors.

The student should be able to meet the following learning objectives:

- Explain the process of human growth and development;
- Demonstrate competence in identifying and differentiating between surface anatomical structures of the lower limb, upper limb spine and trunk;
- Understand the inter-relations between the systems described. (student should know origin, insertion, nerve connection and blood supply of each muscle)
- Describe and relate the structure and function of the upper and lower limbs to clinical pathologies

3.2 Physiology

Course Description:

The course is designed to assess the students to acquire the knowledge of the normal physiology of human body and understand the alteration in the physiology for the fabrication of the prosthesis and orthosis.

The student should be able to meet the following learning objectives:

- Describe and explain cell biology;
- Explain and give examples of basic tissues, their properties and structure;
- Compare and contrast the structure and properties of biological substances (ie: blood, lymphatic fluids, serum);
- Describe parts and organs of the body by systems.
3.3 Materials and Workshop Technology

Course Description:

Students would have competence in practicing effectively and safely within a workshop environment.

The student should be able to meet the following learning objectives:

- Explain the important properties of various types of materials: metals, ceramics, polymers, and composites.
- Describe the relationships that exist between the structural elements of these materials and their characteristics.
- Explain mechanical and failure behaviour of these materials, along with techniques used to improve the mechanical and failure properties in terms of alteration of structural elements.
- Describe the basis for the selection of different materials for specific prosthetic and orthotic applications.
- Demonstrate knowledge of toxicity and safety issues associated with the use of specific materials.
- Be familiar with the occupational health and safety policy and procedures in the workplace.
- Demonstrate proficiency in the use of hand tools and machine tools commonly used in the fabrication of orthopaedic devices.

3.4 Applied Mechanics & Strength of Materials

The student should be able to meet the following learning objectives:

- Demonstrate an ability to utilize appropriate terminology and units to describe mechanical principles.
- Derive free body diagrams in order to describe clinical problems and generate treatment solutions.
- Apply the mechanical principles of statics and dynamics to quantify and explain linear and angular motion of the human body.
- Apply the concepts of stress and strain in the analysis of basic structural elements.
- Determine and draw diagrams for internal forces and bending moments (axial forces, shear forces, moments and torques) in a structural member.
- Explain the principles of composition and resolution of forces and use these principles to solve clinical problems.
- Discuss the concepts of work energy and power.
- Explain the principles of fluid mechanics and describe how the principles can be applied in clinical situations.
- Explain mechanisms underlying failure of structures under deformation.
3.5 Engineering Drawing

Course Description:

The course is designed to assist the students to acquire an introduction to concepts of drawing instruments and their uses, general principles and the basic elements of technical drawing.

The student should be able to meet the following learning objectives:

- Describe about the drawing instruments and their uses
- Describe the general principles of drawing and technical drawing
- To draw isometric sketching and 3D visualizing
- Explain use of drawing standard
- Draw 1st and 3rd angle projection, auxiliary views and simple assembly drawings
- Explain the application of machine tolerances
- Describe about the general sketching

3.6 Biomechanics

Course Description:

The understanding of Bio-mechanical principles of Prosthetics and Orthotics will be the foundation of the work of the students. It is essential to have a sound theoretical knowledge of the subject and students are able to demonstrate the rigorous application of these principles to practical P&O situations and in the analysis of those situations.

The student should be able to meet the following learning objectives:

- Demonstrate an ability to apply principles of tissue mechanics to explain the principles of P&O treatment, (involving various force systems) and the practical problems encountered in prosthetics and orthotics
- Use biomechanical terminology to describe position and motion of the human body
- Discuss mechanical principles governing human motion
- Utilise temporospatial, kinematic and kinetic information to distinguish between normal and abnormal function of the upper limbs, lower limbs & Spine.
- Analyse the forces at a skeletal joint for various static and dynamic activities
- Demonstrate the ability to analyzer forces and moments applied to the body by prosthetic and orthotic devices.
- Apply biomechanical principles to generate optimal solutions to clinical problems in prosthetics and orthotics.
- understand the concepts of differentiation and integration and evaluate derivatives and integrals of a function
3.7 Prosthetic Science

i. Theory:

Course Description:

This subject is delivered in a coordinated manner with the Practical part of the Prosthetic Science course. The student will be required to acquire and comprehend the necessary theoretical knowledge and to be able to integrate this effectively in clinical practice.

The student should be able to meet the following learning objectives:

- Compare and contrast strategies for clinical assessment of patients and describe appropriate investigative techniques including patient history taking and physical examination.
- Recognize and describe the signs and symptoms of the most common pathologies which require prosthetic solutions including, etiology, clinical presentation, prognosis and appropriate device management.
- Demonstrate empathy between Prosthetics theory and the environment in which the client is situated.
- Distinguish between the physical characteristics of the limbs and discuss the relative implication for device design.
- Describe and compare temporospatial and kinematic characteristics of normal and pathological gait and use this information to justify the selection and design of appropriate devices.
- Discuss biomechanical force systems and use these principles in generating an appropriate prosthetic prescription.
- Describe the mechanics of materials and be able to apply these concepts to the design and construction of devices.
- Compare and contrast the functional characteristics of prosthetic components.
- Formulate appropriate prosthetic and orthotic prescriptions for wide range clinical situations.
- Understand and describe the roles of key members of the rehabilitation team and identify how they interrelate with the prosthetist.

ii. Practical:

Course Description:

This should include the supervised manufacture and fitting of all common devices and at least exposure to the range of devices not routinely seen in clinical practice.

The student should be able to meet the following learning objectives:

- Assess the medical condition of a patient related to their orthotic or prosthetic management using appropriate investigative techniques which include patient history taking and clinical testing.
- Formulate an optimal prosthetic solution using information from the patient assessment, other members of the rehabilitation team, medical charts, etc.
Communicate and discuss patient goals and expectations and discuss and debate the prosthetic management with the patient, co-workers and other members of the rehabilitation team.

Reliably measure and capture a positive cast or image of clients’ appendage while correctly positioning the body part and if appropriate apply the necessary corrective force system.

Identify, prescribe and justify selection of appropriate materials and componentry in the construction of the device.

Construct the device using appropriate fabrication techniques in preparation for the initial fitting.

Fit the device to the patient using static and dynamic functional criteria established from the original assessment.

Evaluate the quality of the device fit to ensure the appropriate interface contouring, force application and trimlines.

Identify problems related to device fit and/or alignment and be able to suggest and implement appropriate correction.

Assess and solve prosthetic problems as part of long term patient care.

Maintain accurate records of patient treatment and follow up as well as confidentiality of such information.

Communicate effectively with patient, co-workers, and other health care professionals in such a manner that will ensure the highest quality of service and reflect a professional attitude on the part of the student.

Educate the client and/or caregiver on use, care and function of the device.

Understand the methodology of problem identification, problem solving in a process that includes all stake holders, with the client at the centre.

3.8 ORTHOTIC SCIENCE

i. Theory:

Course Description:

This subject is delivered in a coordinated manner with the Practical part of the Orthotic course. The student will be required to acquire and comprehend the necessary theoretical knowledge and to be able to integrate this effectively in clinical practice.

The student should be able to meet the following learning objectives:

- Compare and contrast strategies for clinical assessment of patients and describe appropriate investigative techniques including patient history taking and physical examination.
- Recognize and describe the signs and symptoms of the most common pathologies which require orthotic solutions including, etiology, clinical presentation, prognosis and appropriate device management.
- Demonstrate empathy between Orthotic theory and the environment in which the client is situated.
- Distinguish between the physical characteristics of the limbs and discuss the relative implication for device design.
Describe and compare temporospatial and kinematics characteristics of normal and pathological gait and use this information to justify the selection and design of appropriate devices.

Discuss biomechanical force systems and use these principles in generating an appropriate orthotic prescription.

Describe the mechanics of materials and be able to apply these concepts to the design and construction of devices.

Compare and contrast the functional characteristics of orthotic components.

Formulate appropriate orthotic prescriptions for wide range clinical situations.

Understand and describe the roles of key members of the rehabilitation team and identify how they interrelate with the orthotist.

ii. Practical

Course Description:

This should include the supervised manufacture and fitting of all common devices and at least exposure to the range of devices not routinely seen in clinical practice.

The student should be able to meet the following learning objectives:

- Assess the medical condition of a patient related to their orthotic management using appropriate investigative techniques which include patient history taking and clinical testing.
- Formulate an optimal orthotic solution using information from the patient assessment, other members of the rehabilitation team, medical charts, etc.
- Communicate and discuss patient goals and expectations and discuss and debate the orthotic or prosthetic management with the patient, co-workers and other members of the rehabilitation team.
- Reliably measure and capture a positive cast or image of clients’ appendage while correctly positioning the body part and if appropriate apply the necessary corrective force system.
- Create the final design of the orthosis through modification of the positive cast and/or tracing of the body part or, when indicated, measure and fit prefabricated devices.
- Identify, prescribe and justify selection of appropriate materials and componentry in the construction of the device.
- Construct the device using appropriate fabrication techniques in preparation for the initial fitting.
- Fit the device to the patient using static and dynamic functional criteria established from the original assessment.
- Evaluate the quality of the device fit to ensure the appropriate interface contouring, force application and trimlines.
- Identify problems related to device fit and/or alignment and be able to suggest and implement appropriate correction.
- Assess and solve orthotic problems as part of long term patient care.
- Maintain accurate records of patient treatment and follow up as well as confidentiality of such information.
- Communicate effectively with patient, co-workers, and other health care
professionals in such a manner that will ensure the highest quality of service and reflect a professional attitude on the part of the student.

- Educate the client and/or caregiver on use, care and function of the device.
- Understand the methodology of problem identification, problem solving in a process that includes all stakeholders, with the client at the centre.

3.9 Pathology

Course Description:

The student should be able to describe and contrast the etiology and progression of diseases and to identify early signs and symptoms of conditions that are commonly encountered by prosthetists/orthotists. In addition, s/he should be able to advise on care and appropriate treatment options.

The student should be able to meet the following learning objectives.

- Describe the basic pathological processes that underlie disease (e.g., cell injury and necrosis, inflammation and healing, ischemia, infarction and neoplasia);
- Apply knowledge of basic pathological processes to explain the etiology, pathogenesis, structural and functional manifestations of diseases commonly encountered in clinical practice, including relevant conditions affecting locomotion and body systems (musculoskeletal system and nervous system, vascular system).

3.10 Orthopedics and Amputation Surgery

Course Description:

In this unit the students learns about the various orthopedic conditions in detail with review of the disabling conditions. It also covers the various common surgical techniques and its influences in the orthotics and prosthetics fit and design.

The student should be able to meet the following learning objectives:

- Have an understanding of different clinical conditions that may indirectly impact on the clients’ ability to successfully rehabilitate using the device.
- Explain the management of different disabling conditions.
- Explain the principles of amputations and revision amputation, types and techniques
- Explain the post operative care of the stump and stump hygiene
- Describe the stump dermatology and the common skin diseases and management.
- Describe and fabricate the post operative fitting in the lower extremity.
- Describe common surgical technique and how they may influence prosthetics and Orthotics fit and design.
3.11 Physical medicine and Rehabilitation

Course Description:

The course is designed to assist the students to develop understanding of the health and socio-economic context of people with disabilities in the community and their role and the role of CBR and introduce different members of the clinic team and theoretical principles of rehabilitation.

The student should be able to meet the following learning objectives

- Recognise members of the clinic team and identify benefits associated with a team approach
- Describe and discuss theoretical principles of rehabilitation;
- Describe theories related to the psychology of loss and disability;
- Discuss the social causes of disability in India and the link between poverty and disability.
- Reflect and analyse on their attitude/values and attitudes towards persons with disabilities, their families and the community (Socio-cultural and religious)
- Explain the UN convention rights and role as prosthetist and orthotist
- Explain the different approaches to rehabilitation.
- Explain different component of CBR and the guiding principles of CBR implementation.
- Explain P & O role in a CBR programme

3.12 Fundamentals of Electricity and Electronics

Course Description:

The student will have knowledge of basic principles of electricity and electronics with particular reference to applications in prosthetics, orthotics and workshop practice.

The student should be able to meet the following learning objectives:

- Explain basic concept of electricity and electronics covering following:
 DC circuits, inductance and capacitance, AC circuits, power, supplies, amplifiers, feedback, interference rejection techniques, myoelectrodes and bioelectricity

 - Explain electronics measuring system
 - Explain safety practice of electricity

3.13 Computer Science

Course Description

Student will acquire computer knowledge to design the prosthetics and orthotics components and apply in research and development in prosthetics and orthotics field.
The student should be able to meet the following learning objectives:

- Describe the advanced application of computer in prosthetics and orthotics field.
- Design various components for prosthetics and orthotics use.
- Make use of computer knowledge in the statistics data analysis and documentation.
- Describe the principles of computer aided design (CAD) & computer aided manufacture (CAM)

3.14 Mobility and rehabilitation Aids

Course description:
Students would learn about the use of various types of mobility aids required by PWDs and related analysis of the gait pattern.

The student should be able to meet the following learning objectives:

- Explain the prescription of commonly used mobility aids like crutches, walking stick, and walkers.
- Assess and prescribe the best possible mobility solution for a wheelchair user.
- Carry out repair and maintenance of wheelchair.
- Describe the correct use of the wheelchairs, transfers and various modifications of wheel chairs.
- Train users to make the best use of their wheelchair.
- Assess, prescribe and fabricate different types of developmental aids.
- Describe the analysis of gait with the related mobility aids.

3.15 Research Methodology

Course description
The student would acquire the knowledge of the research problem, design, Sampling, data collection, analysis of data, Testing hypotheses, interpretation and report writing to prosthetics and Orthotics.

The student should be able to meet the following learning objectives:

- Explain the process, types, design, needs, principles of research.
- Formulate an appropriate research plan in order to solve a clinical problem.
- Examine the concepts of estimation and hypothesis testing with applications to population proportions, means, variances.
- Describe the sampling, data collection and processing of data.
- Examine the data by using different measures.
- Perform effective descriptive statistical analysis as well as statistical inference for a variety of mainstream applications.
- Use appropriate empirical and probability distributions to model data.
• Conduct a basic research study in order to solve a clinical problem

3.16 Prosthetics and orthotics workshop management

Course description:

Students would have an understanding of the planning, construction, human management, store management and safety of the workshop

The student should be able to meet the following learning objectives:

• Explain techniques related to the design, planning, control and improvement of service and manufacturing operations.
• Demonstrate basic knowledge of financial management practices such as cost calculations and accounting processes.
• Address issues related to clinic management including, appointment systems and record keeping.
• Discuss the importance of quality control and workflow management.
• Apply appropriate inventory management protocols
• Understand and discuss the benefits associate with the use of quality assurance systems
• Understand the organization of the workplace environment.

3.17 Clinical Practice

Course description:

The student will have experience in the clinical environment of supplying prostheses and orthoses to patients undergoing treatment. This experience should cover as wide a range as possible but with emphasis on the major levels of provision.

The student should be able to meet the following learning objectives:

They will develop skills in the:

• communication
• assessment and prescription;
• clinical provision of prostheses and orthoses;
• manufacture of prostheses and orthoses;
• interpersonal relationships;
• organisation and management;
• Clinical research.
• Contributing too and learning from the clinic team.

4. CODE OF ETHICS
An appropriate code of ethical behavior is an essential framework for the activities of any professional responsible for the treatment of patients. All Prosthetics & Orthotics professionals need to follow the code of ethics formulated by Rehabilitation Council of India (RCI).

Ethical code of the Prosthetist/Orthotist

- He/ She shall observe loyal relations with her/his colleagues and with other members of the clinic team without assuming roles outside his/her own profession.

- He/ She shall practice absolute discretion regarding personal matters or knowledge about patients he/she might acquire in her/his professional work.

- He/ She like all other members of the clinic team, should supply service only as a member of that team and respect its conclusions.

- He/ She shall collaborate freely in the necessary exchange of information between colleagues and others in the different but related disciplines.

- He/ She shall strive to perform to the highest possible standard of his/her professional skill.

- He/ She shall provide services to patients/clients in a professional manner personal, financial or commercial interests shall be secondary.

- He/ She shall always honestly represent herself/himself as well as his/her services to the patient and all other concerned.

5. **COURSE DESIGNATION:** - BACHELOR IN PROSTHETICS & ORTHOTICS

6. **ENTRANCE**

 A. Candidate who has passed 10+2 in science or equivalent with physics, chemistry and biology/ mathematics with minimum 40% in PCB/PCM will be eligible for admission to this course.

 B. **Lateral entry for Diploma students to BPO course**

 - Candidates who have passed Diploma in Prosthetics & Orthotics from a RCI recognized institute shall be eligible for admission directly in 3rd year BPO course.

 - Candidates should have passed 10+2 with **PCM/PCB**.

 - Admissions will be on the availability of the seats in 3rd year.

7. **DURATION OF COURSE**
The total duration of course will be of 4 years.

* The total 4 years duration should be reflected in the university certificate and mark sheet.

8. ATTENDANCE

No student will be allowed to appear in the examination unless she/he has attended at least 75% of total number of classes in theory and 75 % in practical or as per the rules of university.

9. STUDY TOUR

The study tour can be conducted after 2nd year as per the convenience of the institute.

10. EXAMINATION & KEEPING TERMS

There will be University examinations at specific intervals to cover curriculum of the course as per university norms Minimum passing marks for every subject will be 50% both in theory and practical. The grace marks and divisions will be awarded as per university norms.

Candidates who fulfill minimum passing mark as mentioned above will be automatically promoted to the higher class, or as per the rule of the university. However, candidates who fail in not more than three subjects in any session will be allowed to keep term in the subsequent class provided, they pass in the supplementary examinations, which will be conducted as per university norms.*

11. DEGREE AWARD

After successful completion of all examinations candidate will be awarded with the degree of Bachelor in Prosthetics and Orthotics (BPO). The said degree will be classified by its class such as “First Division, Second Division’ or ‘Pass’ according to the University norms.

12. COURSE CURRICULUM

Year wise distribution of the above course curriculum is as follows as possible model amongst any other model.

✓ In first year the main emphasis is on Anatomy, Physiology, basic engineering, Prosthetics and Orthotics workshop technology and part of lower limb Prosthetics and Orthotics.
In the second year, besides remaining part of lower limb Prosthetics and Orthotics, major emphasis was given to Pathology, Orthopaedics & Amputation Surgery, Physical Medicine and Rehabilitation

In third year, major components would be Rehabilitation/ mobility aid, upper limb Prosthetics and Orthotics, Research Methodology besides computer science etc.

In fourth year major focus is on Spinal Orthotics, Prosthetics and Orthotics management of bilateral amputees especially of higher level and other complicated ones. Three months clinical practice in orthotics and three months in prosthetics has been allotted besides project work.

13. SCHEDULE

Total time available for training in a year could be as follows:

Non Working days in a year

Sundays .. 52 days
Saturdays (half day) 26 days
Summer Vacation 30 days
Winter Vacation 15 days
Preparatory leave 10 days
Gazette holidays 17 days
Examinations .. 10 days

Total non-teaching days - 160 days, so, actual teaching days 364−160 = 204 days
So obviously, total teaching hours in a year would be approximately on the basis of 6 hours per day 204X6 =1224 hours in a year.
These 1220hours have been distributed to each year of study as indicated in the outline programme as following:
14. SUBJECTS, HOURS OF TEACHING AND DISTRIBUTION OF MARKS

First Year:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subjects</th>
<th>Theory Hrs</th>
<th>Practical Hrs</th>
<th>Total Hrs</th>
<th>Marks Theory</th>
<th>Marks Practical</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Anatomy</td>
<td>120</td>
<td>40</td>
<td>160</td>
<td>100</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>Physiology</td>
<td>90</td>
<td>30</td>
<td>120</td>
<td>100</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>Material and workshop Technology</td>
<td>90</td>
<td>60</td>
<td>150</td>
<td>100</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>4.</td>
<td>Applied Mechanics & Strength of Materials</td>
<td>90</td>
<td>50</td>
<td>140</td>
<td>100</td>
<td>---</td>
<td>100</td>
</tr>
<tr>
<td>5.</td>
<td>Engineering Drawing</td>
<td>30</td>
<td>30</td>
<td>60</td>
<td>100</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>6.</td>
<td>Biomechanics I</td>
<td>70</td>
<td>40</td>
<td>110</td>
<td>100</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>7.</td>
<td>*Prosthetics –I</td>
<td>80</td>
<td>160</td>
<td>240</td>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>8.</td>
<td>*Orthotics-I</td>
<td>80</td>
<td>160</td>
<td>240</td>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>650</td>
<td>570</td>
<td>1220</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subjects</th>
<th>Theory Hrs</th>
<th>Practical Hrs</th>
<th>Total Hrs</th>
<th>Marks Theory</th>
<th>Marks Practical</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pathology</td>
<td>80</td>
<td>20</td>
<td>100</td>
<td>100</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>Orthopaedics & Amputation Surgery</td>
<td>70</td>
<td>50</td>
<td>120</td>
<td>100</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>Physical Medicine & Rehabilitation</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>100</td>
<td>100---</td>
<td>200</td>
</tr>
<tr>
<td>4.</td>
<td>Fundamentals of Electricity & Electronics</td>
<td>80</td>
<td>20</td>
<td>100</td>
<td>100</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>5.</td>
<td>Bio-Mechanics-II</td>
<td>80</td>
<td>40</td>
<td>120</td>
<td>100</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>6.</td>
<td>*Prosthetics Science-II</td>
<td>80</td>
<td>260</td>
<td>340</td>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>7.</td>
<td>*Orthotics Science-II</td>
<td>80</td>
<td>260</td>
<td>340</td>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Subjects</td>
<td>Theory Hrs</td>
<td>Practical Hrs</td>
<td>Total Hrs</td>
<td>Marks Theory</td>
<td>Marks Practical</td>
<td>Total Marks</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------------</td>
<td>---------------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1.</td>
<td>Computer Science</td>
<td>60</td>
<td>100</td>
<td>160</td>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>2.</td>
<td>P & O Workshop Management</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>Mobility & Rehabilitation Aids</td>
<td>80</td>
<td>140</td>
<td>220</td>
<td>100</td>
<td>100--</td>
<td>200</td>
</tr>
<tr>
<td>4.</td>
<td>*Prosthetics Science-III</td>
<td>80</td>
<td>260</td>
<td>340</td>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>5.</td>
<td>*Orthotics Science-III</td>
<td>80</td>
<td>260</td>
<td>340</td>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>6.</td>
<td>Research Methodology /Project development</td>
<td>60</td>
<td>---</td>
<td>60</td>
<td>100</td>
<td>---</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>460</td>
<td>760</td>
<td>1220</td>
<td>600</td>
<td>400</td>
<td>1000</td>
</tr>
</tbody>
</table>

Fourth year:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subjects</th>
<th>Theory Hrs</th>
<th>Practical Hrs</th>
<th>Total Hrs</th>
<th>Marks Theory</th>
<th>Marks Practical</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>*Prosthetics Science-IV</td>
<td>60</td>
<td>120</td>
<td>180</td>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>2.</td>
<td>*Orthotic Science-IV</td>
<td>60</td>
<td>120</td>
<td>180</td>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>3.</td>
<td>*Prosthetics Clinical Practice</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>-</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>4.</td>
<td>*Orthotics Clinical Practice</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>-</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>5.</td>
<td>Project Work</td>
<td>--</td>
<td>140</td>
<td>140</td>
<td>---</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120</td>
<td>110</td>
<td>1220</td>
<td>200</td>
<td>800</td>
<td>1000</td>
</tr>
</tbody>
</table>

* Theory & Practical examination for Prosthetics & Orthotics subject should be conducted by examiner from P & O discipline.

15. INFRASTRUCTURAL FACILITIES REQUIREMENTS

1. Two lecture halls (To be increased to four after two years)
2. One room for clinical meeting
3. Two trial fitting rooms (One for men & one for women)
4. Two measurement rooms (One for men & one for women)
5. One plaster room for casting/modification
6. One plastic lamination section
7. One prosthetic laboratory
8. One orthotic laboratory
9. One leather/surgical shoes section
10. One faculty room
11. One office room
12. Two students room (One for men & one for women)
13. One medical officer’s room
14. Gait training facility
15. One store room
16. One waiting hall for the disabled
17. One drawing room with drawing boards & drafting machines
18. One library room
19. One computer room

The space requirements mentioned above are for Prosthetic/Orthotic training only. It is presumed that the centre is having other facilities like Physiotherapy /Occupational Therapy and allied Departments for Rehabilitation.

16. LIST OF MACHINERIES AND EQUIPMENT FOR THE DEPARTMENT OF PROSTHETICS & ORTHOTICS

(The equipment should meet the needs of all students)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Nomenclature</th>
<th>Minimum Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hot Air Oven</td>
<td>02 Nos.</td>
</tr>
<tr>
<td></td>
<td>Heating chamber size-(36”W x 24”D x 30”H), with double layer toughened Front visible glass with inside light arrangement, Maximum temperature 350 Degree C. 12 KW Rating and 1HP 3 phase Ruchi Motor for fan with Digital timer with Hooter with digital thermostat temperature Controller.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Polisher converted to Cone sanding machine 2 HP 3 phase motor.</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>3.</td>
<td>Bench Grinder 0.5 HP, single phase motor, Abrasive</td>
<td>02 Nos.</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Quantity</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.</td>
<td>Drilling Machine (Pillar) Drilling capacity 25 mm, Pillar dia. 87 mm Maximum distance spindle to table 600 mm, Table working surface dia. 400 mm with 1 HP 3 phase motor.</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>5.</td>
<td>Bench Drilling Machine with stand, Capacity ½ inch</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>6.</td>
<td>Shearing machine gear type Cutting blade length 14 inch</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>7.</td>
<td>Industrial Sewing Machine with ¼ HP motor</td>
<td>04 Nos.</td>
</tr>
<tr>
<td>8.</td>
<td>Adjustable Circular Saw dia.18”, Working table size 24”x36” Maximum depth of cut 5½” with 3 HP motor 3 phase</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>9.</td>
<td>Belt and Disc Sander Disc dia. 10 inches, belt size 6”x48” with 1 HP 3 phase motor</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>10.</td>
<td>Electronic Weighing machine</td>
<td>01 Nos.</td>
</tr>
<tr>
<td>11.</td>
<td>Hot Air Gun Temperature range 100-600 degrees C, Power input 2000W</td>
<td>04 Nos.</td>
</tr>
<tr>
<td>12.</td>
<td>Jig Saw Machine sawing depth in wood 54 mm, rated input 350 W</td>
<td>06 Nos.</td>
</tr>
<tr>
<td>13.</td>
<td>Over Head Projector</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>14.</td>
<td>Suction machine/Vacuum Pump</td>
<td>01 Nos.</td>
</tr>
<tr>
<td>15.</td>
<td>Router Machine (adjustable / static) with accessories</td>
<td>01 Nos.</td>
</tr>
<tr>
<td>16.</td>
<td>Hand Drill machine (Cordless)</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>17.</td>
<td>Computers</td>
<td>10 Nos.</td>
</tr>
<tr>
<td>18.</td>
<td>LCD Projectors</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>19.</td>
<td>Laptop</td>
<td>01 Nos.</td>
</tr>
<tr>
<td>20.</td>
<td>Tussle board for drawing (01 for each student)</td>
<td>20 Nos.</td>
</tr>
<tr>
<td>21.</td>
<td>Lathe Machine</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>22.</td>
<td>Band saw machine Cutting table surface 20”x 21” Wheel dia-18 inch, blade width 1” Maximum height 50”.</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>23.</td>
<td>Bench Grinder-cum-Sander 0.75 HP 1 phase</td>
<td>02 Nos.</td>
</tr>
</tbody>
</table>
24. **Disc saw machine** 0.5 HP I phase motor 02 Nos.

25. **Hot Water oven** for low temperature thermoplastic sheet 02 Nos.

26. **Belt and Disc sander** Disc dia. 10 inches belt size 6x48 inches with 0.5 HP 02 Nos.

27. **Work stations (2 work benches) with 2 inches wooden table top** 5 nos

17. STAFF REQUIREMENT

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Core Faculty</th>
<th>Column-I 01-20 seats</th>
<th>Column-II 21-30 seats</th>
<th>Column-III 31-40 seats</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Professor & Head of Prosthetics & Orthotics Department</td>
<td>01</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>2.</td>
<td>Assistant Professors in Prosthetics & Orthotics</td>
<td>02</td>
<td>03</td>
<td>04</td>
</tr>
<tr>
<td>3.</td>
<td>Lecturer in Prosthetics & Orthotics</td>
<td>04</td>
<td>06</td>
<td>08</td>
</tr>
<tr>
<td>4.</td>
<td>Demonstrators Prosthetic & Orthotic</td>
<td>08</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>5.</td>
<td>Instructors in Surgical Shoes & Leather Works</td>
<td>02</td>
<td>03</td>
<td>04</td>
</tr>
</tbody>
</table>

18. QUALIFICATION & EXPERIENCE OF THE CORE FACULTY

(Valid for 5 years from the date of implementation)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>DESIGNATION</th>
<th>QUALIFICATION & EXPERIENCE</th>
<th>PUBLICATION</th>
<th>PAY SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Professor</td>
<td>Post Graduate Degree in Prosthetics & Orthotics from an institution / university recognized by RCI, with a minimum of 12 years of teaching and research experience in any recognized Prosthetic & Orthotic Institution along with Ph.D. Required publication of 5 research papers in indexed journals.</td>
<td>Essential</td>
<td>As per UGC norms</td>
</tr>
<tr>
<td>2.</td>
<td>Associate Professor/Reader Prosthetics & Orthotics</td>
<td>Post Graduate Degree in Prosthetics & Orthotics from an institution/ university recognized by RCI, with a minimum of 3 years of teaching experience in any recognized Prosthetic & Orthotic Institution.</td>
<td>Essential</td>
<td>As per UGC norms</td>
</tr>
</tbody>
</table>
3. **Assistant Professor/Lecturer Prosthetics & Orthotics**
 - Bachelor in Prosthetics and Orthotics with 03 years teaching experience.
 - OR Diploma in Prosthetics and Orthotics with 05 years teaching experience.
 - OR Post Graduate in Prosthetics and Orthotics with 01 years teaching experience.

4. **Demonstrators/Tutor Prosthetics & Orthotics**
 - Bachelor in Prosthetics and Orthotics with 02 years teaching experience.
 - OR Diploma in Prosthetics and Orthotics with 04 years teaching experience can be considered.
 - OR Post Graduate in Prosthetics and Orthotics)

5. **Instructors in Surgical Shoes/Leather Work**
 - Diploma in Foot Wear Technology with a minimum of 2 years experience in Orthotics & Prosthetics, surgical shoe making from a recognized institution.

<table>
<thead>
<tr>
<th>NOTE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The above qualifications are valid for next 5 years only and thereafter the whole curriculum will be reviewed.</td>
</tr>
<tr>
<td>2. A new institute should have minimum two lecturers, two demonstrators and one instructor for 1<sup>st</sup> year and by the end of 3<sup>rd</sup> year all the faculty should be appointed.</td>
</tr>
<tr>
<td>3. Teacher student ratio of 1:10 to be maintained.</td>
</tr>
</tbody>
</table>

19. **GUEST/PART TIME FACULTY**

Lecturers in the following disciplines:

1. Anatomy
2. Physiology
3. Sociology & Psychology
4. Technical Drawing
5. Applied Mechanics & Strength of Material
6. Workshop technology
7. Material Science
8. Pathology
9. Orthopedics & Amputation Surgery
11. Fundamentals of Electricity & Electronics
12. Physical Medicine & Rehabilitation
13. Research Methodology
14. Computer science
15. Workshop Management

(Ministerial staff & others are not included)
Ethics, Medico legal, Insurance and management (for guest faculty on need based, first aid and disaster management).

NOTE:

1. Guest faculty to be arranged from Medical College/ Hospital for medical & related subjects.
2. Guest faculty to be arranged from Engineering College/Polytechnic for Engineering & related subjects.
20. SYLLABUS of BACHELOR IN PROSTHETICS & ORTHOTICS

FIRST YEAR

1. ANATOMY

Histology: General Histology, study of the basic tissues of the body; Microscope, Cell, Epithelium, Connective Tissue, Cartilage, Bone, Muscular tissue, Nerve

Embryology: Development of bones, axial and appendicular skeleton and muscles

Regional anatomy

Thorax:

a) **Cardio – Vascular System**
 - Mediastinum: Divisions and contents
 - Pericardium: Thoracic Wall: position, shape and parts of the heart; conducting System; blood Supply and nerve supply of the heart

b) **Respiratory system**
 - Outline of respiratory passages
 - Pleura and lungs: position, parts, relations, blood supply and nerve supply
 - Diaphragm: Origin, insertion, nerve supply and action, openings in the diaphragm.
 - Intercostal muscles and Accessory muscles of respiration: Origin, insertion, nerve supply and action.

c) **Abdomen:**
 - Peritoneum: Parietal peritoneum, visceral peritoneum, functions of peritoneum.
 - Location, size, shape, features, blood supply, nerve supply and functions of the following: stomach, liver, spleen, pancreas, kidney, urinary bladder, intestines, gall bladder.

d) **Musculo Skeletal Anatomy**
 - Anatomical positions of body, axes, planes, common anatomical terminologies
 - Connective tissue classification
 - Bones- Composition & functions, classification and types according to morphology and development
 - Joints-definition-classification, structure of fibrous, cartilaginous joints, blood supply and nerve supply of joints
Upper Extremity:

a) Osteology: Clavicles, Scapula, Humerus, Radius, Ulna, Carpals, Metacarpals, Phalanges.
b) Soft parts: pectoral region, axilla, cubital fossa, palm, dorsum of hand, muscles, nerves, blood vessels.
c) Joints: Shoulder girdle, shoulder joint, elbow joints, radio ulnar joint, wrist joint and joints of the hand.
d) Arches of hand, skin of the palm and dorsum of hand.

Lower Extremity:

a) Osteology: Hip bone, femur, tibia, fibula, patella, tarsals, metartarsals and phalanges.
b) Soft parts: Gluteal region, front and back of the thigh (Femoral triangle, femoral canal and inguinal canal), medial side of the thigh (Adductor canal), lateral side of the thigh, popliteal fossa, anterior and posterior compartment of leg, sole of the foot, lymphatic drainage of lower limb, venous drainage of the lower limb, arterial supply of the lower limb, arches of foot, skin of foot.
c) Joints: Hip Joint, Knee joint, Ankle joint, joints of the foot.

Trunk & Pelvis:

a) Osteology: Cervical, thoracic, lumbar, sacral and coccygeal vertebrae and ribs
b) Soft tissue: Pre and Para vertebral muscles, intercostals muscles, anterior abdominal wall muscles, Inter-vertebral disc.
c) Pelvic girdle and muscles of the pelvic floor

Head and Neck:

Osteology: Mandible and bones of the skull

Anatomy Practical:

Demonstration of various tissues and cells and Dissection - Demonstration of Lower limbs, upper limbs, spine, surface anatomy and marking.

2. PHYSIOLOGY

General Physiology
• Cell: Organelles: their structure and functions
• Transport Mechanisms across the cell membrane
• Body fluids: Distribution, composition.

Blood

• Introduction: Composition and functions of blood.
• Plasma: Composition, functions. Plasma proteins.
• RBC: count and its variations, Haemoglobin - Anemia. Blood indices, PCV, ESR.
• WBC: Classification. functions, count, its variation of each. Immunity
• Platelets: functions, count, its variations
• Blood coagulation. (brief)
• Lymph: Composition, and functions.

Nerve Muscle Physiology

• Introduction: Resting membrane potential. Action potential
• Nerve: Structure and functions of neurons. Properties and impulse transmission of nerve fibres.
• Neuroglia: Types and functions.
• Muscle: Classification. Skeletal muscle: Structure. Neuromuscular junction, Motor Unit
• Fatigue.

Cardiovascular System

• Introduction: Physiological anatomy and nerve supply of the heart and blood vessels.
• Conducting system: Components. Impulse conduction Cardiac Cycle: Definition. Phases of cardiac cycle. Pressure and volume curves.. ECG: Definition.
• Cardiac Output: Definition.
• Functional anatomy of vascular and lymphatic system
• Arterial Blood Pressure: Definition. Normal values and its variations
• Hypertension

Respiratory System

• Introduction: Physiological anatomy – Pleura, tracheo-bronchial tree, alveolus, respiratory membrane and their nerve supply. Functions of respiratory system. Respiratory muscles.
• Mechanics of breathing: – Inspiration; Expiration; Intrapleural pressure, Recoil tendency and lung volumes
• Hypoxia
• Disorders of Respiration: Dyspnoea. Orthopnoea. Hyperpnoea, hyperventilation, apnoea, tachypnoea: define

Nervous System
Introduction: Organization of CNS – central and peripheral nervous system. Functions of nervous system.

Synapse: Functional anatomy, classification, Synaptic transmission.

Sensory Mechanism: Sensory receptors: function, classification and properties.

Sensory pathway: The ascending tracts – Posterior column tracts, lateral spinothalamic tract and the anterior spinothalamic tract – their origin, course, termination and functions.

Sensory cortex. Somatic sensations: crude touch, fine touch, tactile localization, tactile discrimination, stereognosis, vibration sense, kinesthetic sensations

Reflex Action: Monosynaptic and polysynaptic reflexes, superficial reflexes, deep reflexes. Muscle tone – definition, and properties hypotonia, atonia and hypertonia. UMNL and LMNL

Spinal cord Lesions: Complete transection and Hemisection of the spinal cord.

Cerebellum: Functions
Posture and Equilibrium:
Thalamus and Hypothalamus: Nuclei. Functions.
Basal Ganglia: Structures, functions.

Kidney and micturition

Introduction and functional anatomy of kidney, innervation, renal circulation and care of any appliances fitting for dysfunction.

Micturition – Physiological anatomy and nervous connection of the bladder, cystometrogram micturiton reflex.

Integumentary system: Structure of skin, function of skin: Protection, heat regulation, sensation and elasticity.

Endocrinology

Nutrition & Metabolism

- An Introduction to Nutrition and Metabolism
- Factors influencing energy expenditure

Practical:

1. Clinical examination of nervous system.
2. Clinical examination of sensory system.
3. To study the phenomenon of fatigue in human by Dynamometer

Note: for above practical – physiology practical manual for B.Sc. [Hons.], OT, PT, B.Sc. Nursing and allied sciences Edition first reprint 2006 by CBS publishers
Author: Raj Kapoor

3. MATERIAL AND WORKSHOP TECHNOLOGY

MATERIAL SCIENCE

Metal & Alloys: Fundamentals of metals and alloys both ferrous and nonferrous. Properties, testing and inspection of metals and alloys, heat treatment of metals. Powder metallurgy, surface coating of metals.

Wood: Wood, types, seasoning, preservation, lamination properties and adhesives for wood. Wood work: Introduction to Wood, wood work and wood working tools. Pattern making and making of various kinds of joints.

Leather: Leather, types, tanning, preservation, lamination, properties and adhesives for leather.

Fabric: Fabric types, properties, utilization, selection and quality control. Polymers & composite materials: Introduction to Plastics, type of plastics and molecular structures. Relationship of properties to structures. Monomers, Polymers, additives, Mechanical properties, effect on properties of method of production.

Foams: Different types of foams used in P&O especially Latex, Polyurethane, polyethylene and other kind of rigid/semi rigid/ flexible foams.

Plaster of Paris & Silicon and its application procedure in Prosthetic & Orthotic techniques

WORKSHOP TECHNOLOGY
General: Introduction to bench work, hand tools, measuring tools and instruments. Equipment for mass production, introduction to lathe machine and it’s operation, milling machine and its operations, tooling, attachment, Shaping machine and its uses. Grinding machine, Drilling Machine Abrasive machine etc. Special tools and equipment used in fabrication of orthoses and prostheses.

Compressors, Vacuum Pumps and Dust Collection Equipments
Cutting Tools (Chisels, Saws and Metal Cutters)
Pneumatic Tools
Power Cutting tools
Workshop Safety & Hazards and Care

Mechanical working of metals such as steel and aluminum. Fundamental of riveting, soldering, brazing and welding.

Workshop Technology Practical Practice: Practical work on workshop practices. Practical training on lathes, Drilling Machine (Bench and Pedestal), Grinding Machine, Router, hot air oven, sanding machine, heat gun, pneumatic machines and Other machines. Practical work on various materials and tools and its use in prosthetics & Orthotics.

4. APPLIED MECHANICS AND STRENGTH OF MATERIALS

General Mechanics: Definition of Mechanics, Foundation material on Units, dimensional homogeneity, scalar and vector quantities, Co-ordinate systems, Newton’s laws. Resolution and summation of forces and moments in two and three Dimensions, equivalent force systems, free body diagrams, equations of Equilibrium, plans and space frame analysis. Parallel and non-parallel Forces, torque. Linear and angular motion, uniform acceleration, friction, inertia, moment of inertia, dynamic equilibrium (translation/rotation), Energy, momentum.

Simple stress & Strain: Definition of stress and strains, factor of safety stress, modulus of elasticity, longitudinal strain and internal strains. Possion’s ratio etc. stress and strain curve, statement of formulae relating between different modules, simple problems to understand the above principles of composite bars-formula relating to loads and strains in individual members simple to understand the above relations.

Mechanics Practical (25 hours)

General: Practices on parallel and non-parallel forces, torque. Linear and angular motion, uniform acceleration, friction, inertia.

Design concept: Buckling, theories in failure, fatigue and stress concentrations, connections, Shear force and bending moment diagrams, centroids, 2nd moment of area and mass, theorem of parallel axes, bending stress, torsional stress of circular shafts, combined axial and bending stresses. Combined and torsional stresses, combined axial bending torsional stresses. Open and closed helical springs and beam deflection.
Control systems: Introduction to control theory and its applications in Prosthetics and Orthotics.

Ecogonomics with applied mechanics

General: Introduction to definition and scope in modern industrial social studies on Machine or man oriented topics. Displays devices for transmitting information from machine to man. Controls in information from man to machine. Safety factors, Pollution, noise, fumes, atmospheric pollution if motion study in relation to Ergonomics principles.

5. **ENGINEERING DRAWING:**

Introduction: Drawing instruments and their uses. Sizes and layout of drawing sheets. Item references on drawings and item lists. Planning on assembly.

Fundamentals: Dimensions on technical drawings. Indications of linear and angular tolerance on technical drawings. Orthographic projections of points, lines, simple objects and combinations. Isometric views, Auxillary view, Drawing of screw thread form Bolts Screws and Screw joints, weld and welded joint dimentioning and sketching of P & O components/ parts, pulley shaft, coupling, etc.

Design: Design calculations and its applications for Prosthetics & calculation Orthotics devices.

General Sketching: Sketching for preparing assembly, workshop drawing. Various parts and Components used in prosthetics and orthotics, Basic idea of design analysis, itemisation empiricism, approximation and synthesis. Detail diagrams of all kind orthoses, prostheses and mobility aids.

Practical: All kinds of engineering drawing practice.

6. **BIOMECHANICS-I**

Basic Concepts in Biomechanics: Kinematics and Kinetics

a) Types of Motion
b) Location of Motion
c) Direction of Motion
d) Magnitude of Motion
e) Definition of Forces
f) Force of Gravity
g) Reaction forces
h) Equilibrium
i) Objects in Motion
j) Force of friction
k) Concurrent force systems
l) Parallel force systems
m) Work
n) Moment arm of force
o) Force components
p) Equilibrium of levers

Joint structure and Function

a) Joint design
b) Materials used in human joints
c) General properties of connective tissues
d) Human joint design
e) Joint function
f) Joint motion

Biomechanics of normal foot, pathological foot, foot arches, normal and surgical foot wear.

Human Movements: Normal gait: general features of gait, gait initiation, kinematics and kinetics of gait, energy requirements, Pathological gait

Introduction to EMG studies and recording EMG

Joint Force Analysis: Body segment parameters, joint forces during swing and stance phase, force analysis on foot and ankle joint, knee joint and Hip joint.

Human locomotion and Gait analysis: Introduction to different ways to do gait analysis by using force plate/TV analysis/ electromyography studies, energy studies, gait repeatability, variation due to age, variation due to footwear, Orthoses/Prostheses.. Trans Femoral Amputee, gait analysis and deviations, gait variations due to alignment or pathological conditions.

Biomechanics of Symes prosthesis, partial foot prosthesis, below knee (trans tibial) prosthesis.

7. PROSTHETIC SCIENCE-I

Introduction: Introduction to Prosthetics, definitions of various terminologies, Historical development in Lower Extremity Prosthetics in India and abroad.

Prosthetic Feet: Various types of Prosthetic feet. Conventional foot. Rocker, SACH foot, modified SACH Foot. Jaipur Foot, Seattle foot, Flex foot, Quantum foot, Peg Roelite foot, Carbon copy foot, Comparatives studies of prosthetic feet. Single axis, Double axis, Multi-axial foot, other kinds of feet etc. Heel Height adjustment, Adjustable ankle, various kinds of ankle mechanisms.
Partial Foot: Various types of Partial foot prosthesis. Biomechanics of Partial foot prosthesis, Prescription Principles, Materials used for partial foot prosthesis, various cast techniques of Partial foot prosthesis, Fabrication Technique for partial foot prosthesis.

Syme’s: Various types of Symes Prosthesis, Prosthetic components, Prescription criteria, Principles. Materials used for Symes prosthesis, casting techniques. Cast modification. Fabrication Technique for Symes (P.T.B. type) prosthesis. Fabrication Technique for conventional Symes prosthesis.

Gait Deviations and Analysis: Person with Chopart, Symes, Trans-tibial prosthesis. Check-Out Procedures with Chopart, Symes & Trans-tibial prosthesis.

Prosthetics Practical: Fabrication of Partial foot prosthesis, Chopart Prosthesis, Symes and various types of Trans tibial prosthesis using different technology.

8. ORTHOTIC SCIENCE-I

General: Introduction to Orthotics, definitions of various terminologies, History of Orthoses in India and abroad. Various materials used in Orthotics.

Different types of Orthoses: Users/Client’s assessment and prescription criteria, Measuring and casting, cast modification, three point force system, fabrication, fitting, aligning, checking out and finishing of the following devices:

Shoe Modification: Medial/Lateral raise (Inside /outside shoe), M.T. Bar (Inside /Outside shoe), Arch support, Meta tarsal pad, Calcaneal heel wedge, Heel raise, Thomas Heel, Heel pad for Calcaneal spur, ‘T’ strap (Medial and lateral), Fixation of stirrup plate in shoes/ Sandal, Various types of Arch Supports – flexible/semi rigid/rigid/custom moulded, SMO-Custom moulded Supra malleolar orthosis. Various types of Foot Orthoses for diabetic feet and other sensory deficiencies.

AFO (Ankle foot orthosis): Conventional AFO-, Plastic AFO (custom moulded), Articulated A.F.O & various types of ankle joints

Club foot Orthosis: Orthotic management of CTEV, Ankle support

Orthotic management of Anesthetic Foot.

Orthosis for the management of fracture below knee.
Practical: Different types of foot Orthoses, Shoe modifications, and all types of Mechanical Ankle Joint, conventional & Custom molded (A.F.O.) and fracture Orthosis for below knee.

SECOND YEAR

1. **PATHOLOGY**

 a. **General:**
 i. Introduction to pathology, basic mechanism of health and disease, clarification of disease.

 Inflammation –
 Acute inflammation: features, causes, vascular and cellular events.
 Chronic inflammation: Causes, Types, Classification, Repair, Wound healing by primary and secondary union, factors promoting and delaying the process.

 b. Hemodynamic disorders, thrombo embolic disease & shock.
 i. Ischemic, necrosis, thrombosis, embolism, Infarction, shock.
 ii. Gangrene.
 iii. Thromboangitis obliterans.

 Neoplasia – Definition, classification, Biological behaviour : Benign and Malignant, Carcinoma and Sarcoma, principles of their spread.

 c. Hypersensitivity diseases and immunity – Brief overview of hypersensitivity reaction allergies & auto immune diseases.

 d. Genetic disorders – Brief over view of genetic disease.

 e. Neurovascular diseases
 i. Outline of Cerebro-vascular disorders
 ii. Trauma to brain and spinal cord.
 iii. Demyelinating diseases like multiple sclerosis.
 iv. Degenerative diseases like parkinsons disease.
 v. Peripheral vascular disease
 vi. Poliomyelitis.

 f. Metabolic disorders – Diabetic mellitus- Types, Pathogenesis, Pathology, Laboratory diagnosis

 g. Disorders of blood.

Constituents of blood and bone marrow, Regulation of hematopoiesis.
Anemia: Classification, clinical features & lab diagnosis.
2. ORTHOPAEDICS & AMPUTATION SURGERY

Orthopaedics

Traumatology
Fracture, definition, types, signs and symptoms and management. Subluxation/ dislocations – definition, signs and symptoms, management

Inflammatory and Degenerative Conditions
Osteomyelitis, arthritis and arthroses, eg - Inflammation of Joints, Rheumatoid Arthritis, infective arthritis, tuberculosis arthritis, Osteoarthritis, Ankylosing spondylitis, arthritis of hemophilic joints, Neuropathic joints. Inflammation of tendon sheath and bursa,

Disease of Bones and Joints
Metabolic diseases of bones, e.g. rickets, Osteomalacia, Osteopenia, Osteoporosis, gout, scurvy etc.

Congenital Deformities
Outline of Torticolis, spina bifida, spinal anomalies scoliosis C.T.E.V.

Acquired Deformities
scoliosis – all types, kyphosis, Lordosis, spondylisis Coxa-vara, coxa-valga and coxa magna, Otto pelvis, genu valgus, genu varum, genu recurvatum.

Cervical and Lumbar Pathology
Prolapse of intervertebral disc, Spinal cord injury

Regional Conditions: Definition, Clinical features and management of the following regional conditions

Hip: Outline of Dislocations and subluxations & dysplasia (congenital, traumatic, pathological, paralytic, spastic and central),

Knee: Outline of Meniscal tears, dislocation of patella, Ligamentous injuries.

Ankle & foot: Outline of partial and total ligamentous injuries Sprain Heel and foot deformities (Calcaneo varus, Pes Valgus, varus, Metatarsalgia, plantar fasciitis, Anesthetic feet, Bunion toe Hallux Valgus)

Shoulder: Outline of Recurrent dislocation, Bicipital tendinitis and periarthritis.

Elbow and forearm: Outline of Cubitus varus and valgus, Madelung’s deformity, Tennis elbow, Volkmann’s contracture, Dupuytren’s disease, De Quervain’s disease, entrapment neuropathies.
Wrist & Hand: wrist drop, Tenosynovitis, mallet finger, carpal tunnel syndrome, claw hand,

Specific Disorders: Leprosy, Burns, Tumors – Benign & malignant, Tuberculosis & Perthes Disease, AVN (Full) Peripheral Nerve Injuries, Congenital anomalies Muscular Dystrophy etc.
Sports injuries and their management.

Amputation Surgery

General: Indications/causes, General Principles, Types of amputation, i.e. Guillotine, Flap, Osteoplastic Myoplastic, Osteo-myoplasti c. Individual’s Preparation for prosthesis. Ideal stump. Preoperative, operative and postoperative prosthetic management techniques in general.

Amputation: Amputation surgery in lower and upper limbs, stump refashioning and amputation revision

Orthopaedics Practical:

General: Demonstration of different conditions & relevant x-ray films, how to read from x-ray, how to measure the deformity from x-ray, Cobb,s & Rib angle measurement etc. its simple assessment and P&O management technique.

3. PHYSICAL MEDICINE AND REHABILITATION

A. Psychology & Social work:

Disability & Development:

Background to social, political and economic issues in India and other Low Income countries. Affect on poor who live in rural and urban areas. Disability and women
Introduction to community based rehabilitation as compared to the existing medical model and its function. Introduction to impairment, disability and handicap. Introduction to disability issues, Government schemes and initiatives, legislation and UNCRPD

Local resources available and referral. Income generation schemes, Purpose of Sangha/group of PWDs. Access, adaptations and change of environment where people live or work.

B. Physiotherapy And Occupational Therapy

Introduction to Physiotherapy

Aims and scope of various biomechanical modalities – shoulder wheel, shoulder ladder, shoulder pulleys, pronator - supinator instrument, static cycle, rowing machine, ankle exerciser, balancing board, springs, weights

Normal Posture: definition & description, static and dynamic, alignments of various joints, centre of gravity, planes & muscular moments, and Analysis of posture

Movements: Anatomical definition and description, Movements and exercise as therapeutic modality and their effects, Physiological reaction of exercise.

Traction: Rational, Technique, indications & contra indications.

Brief description of Short wave Diathermy-continuous and pulsed, Microwave Diathermy, Ultrasound, Infrared, UVR and Lasers & other electrotherapy modalities.

Muscle Testing: Concept, introduction, significance and limitations. Grade systems, techniques of muscle testing, goniometry. Brief description of Hydrotherapy.

Therapy at post-surgical stage (re-educating the muscles, maintaining ROM, preventing stump contracture and care of non amputated limb, Exercise through games involving parents or guardians, POP bandage application for temporary splinting and correction of simple deformity, Stump bandaging application etc).

Introduction to Occupational Therapy

Aims and scope of various biomechanical modalities used in Occupational Therapy

Child development in brief - milestone and delayed milestone, Assessment procedure, Evaluation of muscle power, range of motion, checking of joint stability

Functional Assessment which includes ADL, stretching, strengthening, breathing exercise, therapy at post-surgical stage (re-educating the muscles, maintaining ROM,
preventing stump contracture and care of non amputated limb, Exercise through games involving parents or guardians, POP bandage application for temporary splinting and correction of simple deformity, Stump bandaging application etc.

Practical: Practical aspects of physiotherapy, occupational therapy.

C. Physical Medicine and Rehabilitation:

Concept of Total Rehabilitation, Rehabilitation team and role of each member of the team. Introduction to Physical Medicine, Principles of clinical examinations, diagnosis and treatment. Different aspects of physical medicine and rehabilitation. Rehabilitation aspects of visually handicapped, hearing handicapped and mentally retarded and disability evaluation.

Introduction to Health care System, Rehabilitation in Health care, rehabilitation under various ministries, introduction to Institute based rehabilitation (IBR) and Community Based Rehabilitation (CBR). Prosthetics & Orthotics in CBR and Role of CBR Workers in P&O.

Introduction to general medicine and diseases. Chemical and physical agents causing diseases. Outline of metabolic disorders e.g. Diabetes Mellitus, deficiency diseases e.g. Vit. D deficiency and Vit. C deficiency.

Community Based Rehabilitation: What is CBR and its need – what way it is different than IBR, Simple knowledge about other disabilities, its prevention and its management, To understand the role of Key Players in CBR, Referral facilities where to refer when to refer, Role of other professionals in CBR, Role of P&O Professionals in CBR, Early identification and early Intervention, How to work as a team in CBR/IBR structure, Simple techniques to make CBR activities more purposeful, Telemedicine

Specific disorders: Peripheral nerve injuries. Poliomyelitis, Cerebral Palsy, Muscular Dystrophy, Club foot (CTEV), Spina Bifida, Hemiplegia, Spinal Cord injuries (paraplegia/ Quadriplegia),

Infections – Prevention & control
- Pyogenic infection.
- Tubular and fungal in infections.
- Leprosy & STD.
- Parasitic & Protozoal disease.
- Viral, Rickets diseases, AIDS.

Out lines of pathology of bone diseases, infections, trauma, & growth disturbances.
- Rickets, osteomalacia & osteoporosis.
- Fracture of bone & its healing
- Skeletal tuberculosis.
- Osteo myelities – Pyogenic & tubucular.
- Bone neoplasm.
• Avascular necrosis [osteo necrosis]
• Overview of osteogenesis imperfecta, pagets etc.

Disease of joints.
• Osteoarthritis, Rheumatoid arthritis re-active arthritis, ankylosing spondyloarthritis & re-active arthritis.
• Infectious arthritis.
• Gouty arthritis and pseudo gout
• Brief overview of tumors of joints.

Diseases of soft tissue and skin
• Soft tissue tumors
• Ligamentous and meniscal disease and injuries with special emphasis on sports injuries.
• Skin – protection, heat, regulation, sensation, elasticity, wound repair, response to irritants, response to pressure & ischemia brief.
• Overview of skin disease – Eczema, contact dermatitis both etc.

Neuromuscular diseases: normal peripheral nerve and skeletal muscle.
• General re-actions of motor unit
• Disease of peripheral nerves – inflammatory neuropathies, immune mediated infections, polyneuropathies [leprosy, etc, hereditary neuropathies, acquired metabolic & toxic neuropathies, nutritional neuropathies., Traumatic neuropathies.
• Disease of skeletal muscle.
• Muscular dystrophies.
• Myotonic dystrophy.
• Inflammatory & toxic neuropathies.
• Neurovascular diseases.

Sports Injuries: Introduction to sports injuries, common sports injuries and their management, Mechanism of injury to hip, knee, ankle, shoulder, elbow, wrist and hand in various sports and outline of their Orthotics management.

Examination has to be conducted of A, B, C section with separate answer sheet for the evaluation by the concerned faculty /professionals.

4. FUNDAMENTALS OF ELECTRICITY AND ELECTRONICS

Electricity

Basic Concepts: Introduction to SI System of units, charge, current, resistance, potential differences, electromotive force, Energy power, Voltage and current Relationship, energy storage, DC circuits, AC circuits, sine wave, Frequency, Period, phase, RMS value, inductive and capacitive reactance.
Resistors: Resistors sensitive to temperature, strain and light, Resistors in series and in parallel.

Transformers: Principle of the transformer, voltage, turns and current ratios.

Semi Conductors: Outline Concepts of semiconductors and insulators. Conduction in intrinsic and extrinsic semi conductors.

Amplifiers: Amplifiers as a system element. Operational amplifiers and their ideal characteristics. The small single equivalent circuit having a controlled source. Voltage and current gain, the decibel power gain, Noise and drift voltages, Source in amplifiers and bio-systems.

Feed Back: The general Feedback equation, Feedback Voltage series, negative feedback and loop gain, loop gain Accuracy, input resistance, output resistance, band width of noise. Feedback as a control mechanism in the wider sense, Positive feedback – instability and self-oscillation in amplifiers and oscillators.

Measurements: Electronics measuring instruments.. Summary of recording instruments. Concepts of resolution and accuracy applied to digital and analogue instruments. Transducers for temperature, light, pressure; sounds, description, specification and use in circuit.

Myoelectrodes: Technology of metal and metal paste electrodes, the equivalent circuit between electrodes, stability, source of unwanted voltage electrode systems. Other types of myoelectrodes micro electrodes, implanted electrodes, comparison with surface electrodes. Sensors, microprocessors etc.

Electrical Safety: Description of single phase and three phase supply system and voltage involved. Function of line, natural and earth in single phase system. Current practice in pin connection and colour codes. Simple safety procedure to be taken when servicing equipment. Effect on safety of fault conditions. Fuses, Conductors and earth leakage detectors – miniature circuit breakers (MCB). Voltage regulators integrated circuits.

Bio-Electricity: Biological Potentials, Muscle action potentials, Electro-myography and Myo-electricity

5. BIOMECHANICS – II

Through knee Biomechanics: Through knee Prescription Principles, socket biomechanics and alignment techniques.

Trans Femoral Prosthetics Biomechanics: General Socket biomechanics, Trans Femoral socket biomechanics and analysis of socket forces. Analysis of Trans Femoral Prosthetic components.

Gait deviation: Gait deviation while using while using Foot Orthoses (FO), Ankle Foot Orthoses (AFO) and trans-tibial prostheses.
Above knee Orthotics Biomechanics: Biomechanical principals of various kinds of above knee Orthosis especially Knee Ankle Foot Orthosis and Floor Reaction Orthosis. Biomechanics of HKAFO especially to prevent scissoring. Three/four/five point force system. KAFO and HKAFO gait deviations due to alignments or pathological conditions. Gait analysis of KAFOs and HKAFOs with various types of crutches.

Combined and torsional stresses, combined axial bending torsional stresses. Open and closed helical springs, beam deflection. Design test standards/materials/Philadelphia Loads/ISO. Design calculations for P&O devices/BIS.

6. PROSTHETICS SCIENCE- II

Knee Joints: Different types of Endoskeletal and exoskeletal knee joints - Single axis knee joints, Polycentric knee joints, Free knee, Constant friction knee joints, Variable friction Knee joint, microchip control knee, hydraulic knee joint, swing Phase control knee joints, Stance Phase control knee joints etc.

Hip Joints: For above knee as well as for hip disarticulation/ hemi-pelvectomy – all types of hip joints especially single axis and Swivel type.

Through Knee Prosthesis: Various types of through knee prosthesis - Through knee prosthetic Components. Materials used for through knee prosthesis. Casting techniques for through knee prosthesis, Cast modification, Fabrication Techniques of through hip prosthesis, through knee Gait analysis and deviations, Through knee Check-out Procedures.

Trans Femoral Prosthesis: Types of Trans Femoral Prosthesis. Trans femoral Prosthetic Components. Trans Femoral Socket designs. Casting and measurement techniques, Cast modification, Fabrication techniques of Trans Femoral socket. Various types of suspension used in Trans Femoral Prosthesis.

Endoskeleton/modular: all common types, Trans Femoral Gait Analysis, Trans Femoral Check-out Procedures.

Prosthetics Practical: Fabrication of all types of above Knee prosthesis and through knee prosthesis.

7. ORTHOTICS SCIENCE-II

Above knee Orthotics: Types of knee & Hip joints

Orthotics Components: Prescription principles of various types of Knee Orthoses (KO), Knee Ankle foot Orthoses (KAFO), Hip Knee Ankle foot Orthoses (HKAFO). RGO & ARGO Orthoses

All types of K.A.F.O., H.K.A.F.O. FRO, RGO & ARGO etc. and also Orthoses for management of C.D.H., C.P., Paraplegics, Legg Calve perthes diseases, Spina Bifida, Leprosy and Hemiplegia etc.

RCI’s BPO Revised Curriculum, 2010
Fabrication: Cast and measurement techniques, appropriate selection of materials and components, cast modification, fabrication and alignment technique, using of different technologies – its advantages and disadvantages, Accommodation of limb length discrepancy while designing orthosis, Gait analysis and check out procedures.

THIRD YEAR

1. COMPUTER SCIENCE

Introduction to computers and Components of computers: Physical Composition, Central Processing Unit, Main Memory, Input and Output units and also all kinds of common types of computer peripherals.

Hardware: Various Configurations, Specification of peripherals and computer system. Various types of storage facilities and its advantages and disadvantages.

Computing environments: Introduction to types of computers- Personal computers, Main frame and super computers, Networks, E-Mail, Internet. Introduction to operating systems, e.g. DOS, Windows, Linux, Unix, commands and introduction to General file systems.

Software: The current operating software’s, Word Processor, spreadsheet, database and presentation software, e.g. Windows XP or Windows 2000 Professional, Microsoft Office XP or 2000 Professional etc., upgraded as used currently, Anti Virus.

Computer Aided Design & Manufacturing (CAD & CAM)

AutoCad 2010 and updated version: Introduction, Foundation of AutoCad Commands, Execution of Simple 2D Drawings, Understanding 3D commands, Executing 3D Commands, Creating 3D objects Rendering and Image attach to an object Starting New Projects, Creating, Editing, Saving Drawing, Annotation, Dimension, Plotting, Customisation, Auto Lisp.
Introduction to CNC, History of CNC, Advantages and disadvantages of N/C, CNC, DNC, Major part of CNC.

Basics of CAM: Introduction of CNC machine, basics of Computer Aided Designing and Manufacturing (CADCAM) and its use in P&O. Other kinds of Computer use in Prosthetics and Orthotics. CADCAM Technology in socket making and also making of different kinds of orthosis and prosthesis.

CAD/CAM in Prosthetics & Orthotics: types of digitizers used, concept of different types of modifying software, CNC carver and its specification, step wise fabrication procedure of sockets, shells and spinal orthoses, its advantages and disadvantages

Practical:

1. Trainees has to be thorough in all branches of MS Office especially WORD and POWERPOINT. In addition to that it would be better if trainee also learn one additional drawing and imaging software among e.g. Corel Draw, PageMaker, Photoshop or similar kind of softwares.

2. Trainees has to be thorough in all branches CADCAM especially AUTOCAD. Trainees should make design of all common types of P&O components which are regularly in use by using AutoCAD software.

2. P&O WORKSHOP MANAGEMENT

Material Management: Store and store organization. Inventory Control. Purchase organization. Introduction to cost accounting. Use of computer for effective store management.

Safety: Industrial accidents, safety and hazards

Planning: Planning of Prosthetics and Orthotics Workshop all types of various scales. Workshop layout, plant Layout. Costing, billing, documentation especially development of recording system to manage individual’s records.

Construction: Construction, ventilation, electrification, colour scheme, lighting, Sanitary convenience, Further expansion and accessibility of Prosthetic and Orthotic Workshop and fittings.

Human resource management & Environmental Science:

Economics:
Business management practices such as cost calculations, accounting process and budgeting address issues related to clinic management including, appointment systems and record keeping, Quality control and the use of quality assurance system Appropriate code of ethical behaviour of P & O Professional responsible for the treatment of patients

Practical:

Either to design and develop a workshop or to carry out a project for layout of a workshop for prosthetics and orthotics work or workshop of similar nature.

3. MOBILITY AND REHABILITATION AIDS

Mobility and Walking aids: Canes, walking sticks, Crutches - auxiliary, elbow and forearm support. Different types of Walking Frame, Walker and their attachments. Para podium etc

Developmental aids: Biomechanics of various kinds of developmental aids, Normal milestone and delayed milestone, prescription, design and materials used, measurement techniques, fabrication of Box seat, Special Chair with or without table/tray, Standing/tilting frame, Low-level cart, Prone board and various developmental and educational toys. Maximum use of Appropriate Technology while making developmental aids.

Molded seats: Biomechanics of various kinds of molded seats, prescription criteria, cast and measurement techniques, Cast modifications, fabrication of molded seats with inside or outside posting, use of different materials and technologies to fabricate the same, suspension or right kinds of strapping.

Wheelchair: Manual wheelchair: Benefits of appropriate wheelchair for a wheelchair user, Features and benefits of ‘sitting upright’ in wheelchair., Types of wheelchair, cushion and its components and its safe handling, pressure relief techniques, , user assessment, prescription, measurement, fitting, Transfer techniques, Wheelchair mobility skills, Care & Maintenance of Wheelchairs and importance of wheelchair user instructions.

Cushions and its fabrication technique & wheelchair modification.

Other types: Introduction: Motorized wheelchair, tricycle and motorized tricycle, modified two wheeler for mobility.

Gait Training with various walking aids, Installation/ fabrication of Parallel bars.

Self help devices: Special gadgets to assist in activities of daily living (A.D.L.) – assistive device for SCI patients, stroke patients etc.
4. PROSTHETIC SCIENCE-III

Upper Limb: Grasp patterns, grasp forces, mechanical replacement of hand function, augmentation of deficient hand function, upper limb prosthetic socket biomechanics – all types.

Control systems: Introduction to control theory, application in Prosthetics of functional electrical stimulation (FES), myoelectric and bio-feedback.

Upper limb prosthetics: Historical development in Upper Limb Prostheses – India and abroad, Upper Extremity Prosthetics Components - Terminal devices, Wrist units, Elbow units, Shoulder units, Harnessing systems in Upper extremity prosthesis.

Partial Hand: Both cosmetics and functional types which also includes silicon prostheses. Cosmetic hand gloves and fingers. Devices for augmentation of function and cosmesis for partial hand amputation and finger amputation.

Wrist Disarticulation: Prescription Criteria, Types of prosthesis – Components, Socket Shape, Clinical Considerations, Casting and measurement techniques, Cast modifications, Fabrication techniques, alignment techniques, Harnessing and suspension mechanisms, Fitting, donning and doffing techniques. Check out procedures, Testing and Training.

Trans Radial: Prescription Criteria, Types of Trans Radial prosthesis – Components, Types of Socket which includes Self suspending, flexible/rigid socket or combination of both, Clinical Considerations, Casting and measurement techniques, Cast modifications, Fabrication techniques – single wall and double wall, alignment techniques, Harnessing and suspension mechanisms, Control system – body powered and externally powered, Fitting, donning and doffing techniques. Check out procedures, Testing and Training.

Trans Humerus: Prescription Criteria, Types of Trans Humeral prosthesis which also includes Elbow Disarticulation prostheses – Components, Different types of Elbow Mechanisms. Types of Socket which includes Self suspending, flexible/rigid socket or combination of both, Clinical Considerations, Casting and measurement techniques, Cast modifications, Fabrication techniques – single wall and double wall, alignment techniques, Harnessing and suspension mechanisms, Control system – body powered and externally powered, Fitting, donning and doffing techniques. Check out procedures, Testing and Training.

Shoulder Disarticulation: Prescription Criteria, Types of prosthesis both cosmetics and functional, Components, Different types of Elbow and Shoulder Mechanisms. Types of Socket, Clinical Considerations, Casting and measurement techniques, Cast modifications, Fabrication techniques, alignment techniques, Harnessing and suspension mechanisms, Control system – body powered and externally powered, Fitting, donning and doffing techniques. Check out procedures, Testing and Training.

Prosthetics Practical: Fabrication of prosthesis for partial hand amputation or congenital absence, through wrist prosthesis, Below Elbow prosthesis, Above Elbow prosthesis, Shoulder Disarticulation prosthesis, Elbow Disarticulation prosthesis – preferably using various available technologies.
Practical: Different ways of design tests, use of FES and myoelectric control system in P&O devices.

5. ORTHOTIC SCIENCE -III

Upper Limb: Orthosis biomechanics, application of external power, myoelectric control of external power and usage of devices.

Control systems: Introduction to control theory, application in Orthotics of functional electrical stimulation (FES), hybrid Orthosis.

Immobilization/ mobilization, Appliances for flail elbows: Measurement/casting and Fabrication of Shoulder Orthoses, The shoulder joint braces and splints, Abduction splints and braces, Traction splint of Humerus, All types of Shoulder Elbow Wrist and Hand Orthoses which also includes both body powered and externally powered. All types of fracture Orthoses, Temporary splinting, Feeder and other assistive appliances.

Orthotics Practical: Fabrication of at least 5 types of splints belonging to each group.

6. RESEARCH METHODOLOGY

Introduction to Biostatistics
1. Definition – Statistics, Biostatistics
2. Applications of Biostatistics
3. Data collection from experiments & surveys.
4. Variable – Qualitative & Quantitative, Discrete and continuous.
5. Presentation of Data: -
 a) Tabular Presentation of Data – Statistical Table, Format of a Table.
 b) Frequency Distribution – construction of Frequency Distribution, cumulative and relative frequency distribution, Exclusive and inclusive method of classification of Data.
 c) Diagrammatic Presentation of Data: -
 Bar diagrams, Pie Diagram, Line Diagram, Pictogram, Cartogram or Statistical map.
 d) Graphical representation of a Frequency distribution – Histogram, Frequency Polygon, Frequency curve, ogives or cumulative frequency curves.

Research methodology:
1. Introduction to Research methodology: Meaning of research, objectives of research, Types of research & research approaches,
2. Research problem: Statement of research problem Statement of purpose and objectives of research problem, Necessity of defining the problem
3. Research design: Meaning of research design, Need for research design,
4. Sampling Design: Criteria for selecting sampling procedure
5. Measurement & scaling techniques: Measurement in research- Measurement scales, sources of error in measurement,
7. Sampling fundamentals, need for sampling
8. Analysis of data.; Types of analysis.

FOURTH YEAR

1. PROSTHETIC SCIENCE-IV

Hip Disarticulation Prosthesis: Various types of through hip Prosthesis. Prescription principles, Materials and components to be used, Casting and measurement techniques, Cast modification, alignment, suspension, Fitting, donning and doffing techniques. Check out procedures, Testing and Training. Through hip Gait analysis and deviations.

Practical: Fabrication of Prosthesis for through hip, double or multiple amputees, Fitting of Prosthesis in cases and developing and/or adapting new designs.

2. ORTHOTIC SCIENCE -IV

Spinal Biomechanics: Motions of the spine, Biomechanics of different region in spinal column, Biomechanics Inter vertebral disk, Lumbar Spine loading during normal activities and effects of Orthosis on this loads, Biomechanical Principles of spinal orthosis, Biomechanics of Corsets, Cervical/thoraco/lumbar/sacral spinal orthosis. Biomechanics of scoliosis correction using different technologies especially using Spinal orthosis.

Cervical Orthoses: Principle, material, measurement/ casting, fabrication of all types of Cervical Orthoses especially different types of cervical collar, semi-rigid/rigid cervical
orthoses both temporary and permanent. Cervical Traction, HALO traction and various types.

Thoraco Lumbo Sacral Orthoses: Flexible spinal Orthoses. Rigid spinal orthoses. Principle, material, measurement/ casting, fabrication of all types of Thoraco Lumbo sacral orthoses (TLSO) especially all types of orthoses for scoliosis. All types of under arm orthoses and variants. Various types of Immobilisers, Fitting, donning and doffing techniques. Check out procedures, Testing and Training. Lumbo sacral Orthoses: Principle, material, measurement/ casting, fabrication of all types of Lumbo sacral orthoses (LSO) especially Corsets and all types of orthoses for Lordosis and scoliosis. Pelvic traction and its uses.

Orthotics: Orthoses for sports injury, Reciprocating Gait Orthoses (RGO), Hip Guidance Orthoses(HGO), Fracture Cast Bracing, Swivel walker, orthopodium/ Parapodium. Weight relieving orthoses, Extension orthoses or Ortho-prostheses, PTB. orthoses, Silicone Cosmetic prosthesis.

Practical: Fabrication of orthoses for children with Cerebral palsy as in para above and adapting according to the individual needs.

3. PROJECT WORK

Each Trainee shall take a project work under supervision of a guide. Project work has to be well documented and presented in essay form. The major focus will be trainee's original work which she or he has to present prior to final examination. The subject and the guide should be chosen within four weeks from the day of admission to the fourth year.

4. PROSTHETICS CLINICAL PRACTICE

Direct Service: In this period each trainee will be in touch directly with the persons with disabilities under supervision of the Instructor/Demonstrator. She/he would do all the necessary work from start to the finish for fittings of suitable prostheses. Each person fitted with prostheses has to be documented/ recorded well and to be presented in the clinics in front of Rehabilitation team and other trainees. Besides fitting, trainee would also work with other rehabilitation team members to understand “Total Rehabilitation”.

5. ORTHOTICS CLINICAL PRACTICE

Direct Service: In this period each trainee will be in touch directly with the persons with disabilities under supervision of the Instructor/Demonstrator. She/he would do all the necessary work from start to the finish for fittings of suitable prostheses. Each person fitted with prostheses has to be documented/ recorded well and to be presented in the clinics in front of Rehabilitation team and other trainees. Besides fitting, trainee would also work with other rehabilitation team members to understand “Total Rehabilitation”.
RECOMMENDED BOOKS & JOURNALS

ANATOMY

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Human Anatomy: Regional and Applied</td>
<td>Chaurasia, B D</td>
<td>CBS, New Delhi</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3V</td>
</tr>
<tr>
<td>4.</td>
<td>Human Osteology</td>
<td>A.K.Dutta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Grant’s Method of Anatomy</td>
<td>John V. Basmajian</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHYSIOLOGY

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Human Physiology</td>
<td>Chatterji, C. C.</td>
<td>Medical Allied</td>
<td>1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2V</td>
</tr>
<tr>
<td>4.</td>
<td>Essentials of Medical Physiology</td>
<td>K.Sembulingam & Prema Sembulingam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PATHOLOGY

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Basics of Pathology</td>
<td>By Robins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Test Book of Pathology</td>
<td>By Dr. Harsh Mohan</td>
<td>Jaypee Publisher New Delhi</td>
<td></td>
</tr>
</tbody>
</table>

PROSTHETICS & ORTHOTICS

RCI’s BPO Revised Curriculum, 2010 49
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Prosthetics & Orthotics Lower Limb & Spine</td>
<td>Seymour, Ron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Amputations & Prosthetics</td>
<td>May Bella J.</td>
<td>Jaypee Publisher New Delhi</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Orthotics in functional rehabilitation of the lower limb</td>
<td>Nowoczenski, Deborah A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Orthotics</td>
<td>Edestein, Joan E.</td>
<td>Jaypee Publisher New Delhi</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Wheel chair selection & configuration</td>
<td>Cooper, Cynthia ed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Orthotics in rehabilitation</td>
<td>Mckee, Pat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Hydraulics and pneumatics</td>
<td>Parr, Andrew</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Foot and ankle in sports</td>
<td>Bates, Andrea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Functional fracture bracing</td>
<td>Sarmiento, A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Maintenance and care of the prosthesis</td>
<td>C.A. Hannesseg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Hip disarticulation Prosthesis</td>
<td>C.A. Melancik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>FOOT ORTHOSIS</td>
<td>Kent, Wu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Principal in Prosthetic</td>
<td>E.F.Murphy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Authors</td>
<td>Publisher/Location</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Orthotics and Prosthetics in Rehabilitation</td>
<td>Michelle M. Lusardi PhD PT and Caroline C. Nielsen PhD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Guidelines for Prescribing Foot Orthotics</td>
<td>Mark A. Reiley</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Orthotics in Functional Rehabilitation of the Lower Limb</td>
<td>Deborah A. Nawocze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Control of the Foot/Ankle Complex: Orthotic Recommendations</td>
<td>American Academy of Prosthetists & Orthotists</td>
<td>American Academy of Prosthetists & Orthotists</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Powered upper limb prosthesis</td>
<td>American Academy of Prosthetists & Orthotists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>Orthotics Etcetera</td>
<td>John B Redford</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>Upper Extremity Orthotics</td>
<td>Anderson, Miles H.</td>
<td>Jaypee Publisher New Delhi</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>New Advances in Prosthetics and Orthotics</td>
<td>Mark H Bussell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>Manual of Lower Extremity Orthotics</td>
<td>AAOS</td>
<td>Spring field</td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>Prosthetic & patient management</td>
<td>Kevin Croll</td>
<td>1st</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>Orthotic & Prosthetic</td>
<td>Michel M. Lusardi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Title</td>
<td>Author</td>
<td>Publisher</td>
<td>Year/Vol.</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------------------------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>38.</td>
<td>Clinical Practical & rehabilitation Technology</td>
<td>Johan B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td>The Immediate post-operative Prosthesis in L. E. Amputation</td>
<td>Andrew C. Ruoff & Others</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>Congenital Limb Deficiency</td>
<td>Charles A Frank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.</td>
<td>Above Knee Amputation-Prosthetic Principles & Practice</td>
<td>Zems Grim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.</td>
<td>Hemipelvectomy Prosthesis</td>
<td>Fred Hampton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.</td>
<td>Hip Disarticulation Prosthesis</td>
<td>C. A. Mclaucik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.</td>
<td>Powered Lower Limb Orthotics in Paraplegia</td>
<td>J. Hughes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PSYCHOLOGY & SOCIOLOGY

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sociology</td>
<td>Vidya Bhusan & Mazumdar</td>
<td>Kitab Mahal New Delhi</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Introduction to sociology</td>
<td>Devis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Child Development</td>
<td>By Hurlock (ED)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Intro. To Psychology ED.7</td>
<td>By Morgan (CT)</td>
<td>Tata Mcg. Hill, Delhi</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Abnormal Psychology</td>
<td>BY Mohanty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Text Book of Sociology</td>
<td>Wallis, Willey</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wilson D, Malcom M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BIOMECHANICS

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Introduction to</td>
<td>Humphrey, Jay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Title</td>
<td>Author</td>
<td>Publisher</td>
<td>Year/Vol.</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>4.</td>
<td>Human walking</td>
<td>Rose, Jessica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Gait analysis</td>
<td>Perry, Jacuelin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Human body dynamics</td>
<td>Tozeren, Aydin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Human motion analysis</td>
<td>Harries, G.F.ed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Clinical biomechanics</td>
<td>Dvir, Zeevi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jeffrey M, Neil B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Principles of mechanics and biomechanics</td>
<td>Stanley Bell P Frank</td>
<td>B. I. Publications uk</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Clinical Biomechanics</td>
<td>Black Jonathan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Biomechanics of the Foot and Ankle</td>
<td>Donatelli, R.A.</td>
<td>Davis, Philadelphia</td>
<td></td>
</tr>
</tbody>
</table>

COMPUTER SCIENCE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CAD, CAM</td>
<td>McMohan, Chris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>CAD/CAM theory and practice</td>
<td>Zeid Ibrahim</td>
<td>B. I. Publications P New Delhi</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Computer course</td>
<td>Satish Jain</td>
<td>Pub: BPB New Delhi</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Operating systems</td>
<td>BPB</td>
<td>Pub: BPB New Delhi</td>
<td></td>
</tr>
</tbody>
</table>

RCI’s BPO Revised Curriculum, 2010 53
<table>
<thead>
<tr>
<th>No.</th>
<th>Course Title</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>Auto CAD 2007 for engineers & designers</td>
<td>C.D</td>
</tr>
<tr>
<td>9.</td>
<td>Sensor technology handbook</td>
<td>C.D</td>
</tr>
</tbody>
</table>
MATERIAL SCIENCE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Physics of plastics</td>
<td>Biller, Jose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Carbon materials for advanced technologies</td>
<td>Bulson, P.S. ed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Fundamentals of polymer engineering</td>
<td>Ram, Arie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Plastics technology handbook</td>
<td>Chan, Karence K. ed.</td>
<td></td>
<td>2nd ed.</td>
</tr>
<tr>
<td>6.</td>
<td>Polymer Foams Handbook</td>
<td>Nigel Mills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Introduction to Composite materials</td>
<td>S.W. Tasi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENGINEERING DRAWING

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Technical/Engineering Drawing</td>
<td>P.S. Gill</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPLIED MECHANICS & STRENGTH OF MATERIAL

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Strength of Materials</td>
<td>Jagdish Lal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WORKSHOP TECHNOLOGY

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
</table>
ORTHOPEDICS & AMPUTATION SURGERY

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Outline of orthopaedics</td>
<td>Adam's</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Apley’s Systems of Orthopedics and Fracture</td>
<td>Solomon, Louis</td>
<td>Arnold, London</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Essential Orthopedics</td>
<td>Maheshwari, J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Orthopedics: principles and their application</td>
<td>Terke, Samuel L.</td>
<td>Lippencott, New York</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Amputation & Prosthesis</td>
<td>Miroslow Vitali</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FUNDAMENTALS OF ELECTRICITY & ELECTRONICS

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic electronics</td>
<td>Thereja, B.L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sensor technology handbook</td>
<td>C.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fundamentals of digital electronics & microprocessors</td>
<td>Singh, Anokh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Biological & Medical Electronics</td>
<td>Ralph. W. Stach, Ph.D.</td>
<td>London.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bio-electricity</td>
<td>by E.E. Svek / Ling D.E.E.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHYSICAL MEDICINE & REHABILITATION

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Physical Medicine & Rehabilitation</td>
<td>Bredamm,s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Physical Medicine & Rehabilitation</td>
<td>Deliza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Neurological Rehabilitation</td>
<td>Carr, J.H. and Shepherd, R.B</td>
<td>Butterworth, Oxford</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Handbook of Physical</td>
<td>Kottke, F.J. and</td>
<td>W B Saunders,</td>
<td></td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Title</td>
<td>Author</td>
<td>Publisher</td>
<td>Year/Vol.</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-----------------</td>
<td>--</td>
<td>---------------</td>
</tr>
</tbody>
</table>

RESEARCH METHODOLOGY

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Orthotic system& research</td>
<td>R.M. Scot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHYSIOTHERAPY/OCCUPATIONAL THERAPY

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Year/Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Occupational Therapy</td>
<td>Pedartery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Occupational Therapy</td>
<td>Willard & Specsman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Hand Splinting</td>
<td>Win & Parry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Movement Therapy in hempleagia</td>
<td>Brunn Stones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Introduction to Physical Therapy</td>
<td>Pagliarulo, M.A.</td>
<td>Mosby, London</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Human Movement Explained</td>
<td>Jones,</td>
<td>Butterworth Heine</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Principles of Exercise Therapy</td>
<td>Gardiner, Dena</td>
<td>CBS, New Delhi</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Electrotherapy Explained</td>
<td>Jhon, Low and A Reed</td>
<td>Butterworth Heine Oxford</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Tidy’s Physiotherapy</td>
<td>Thomson, A</td>
<td>Varghese, Mumbai</td>
<td></td>
</tr>
</tbody>
</table>